If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+31x-9.3=0
a = 3; b = 31; c = -9.3;
Δ = b2-4ac
Δ = 312-4·3·(-9.3)
Δ = 1072.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-\sqrt{1072.6}}{2*3}=\frac{-31-\sqrt{1072.6}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+\sqrt{1072.6}}{2*3}=\frac{-31+\sqrt{1072.6}}{6} $
| 7x+4/5=3x-2/4 | | U+1/4-2u-2/3=3 | | -v+183=127 | | X-10+70+2x-30=180 | | 8^70=2x | | |-3x+6|=|-5x+4| | | 10=0.2^x | | 275-x=85 | | 0.2x+5=11 | | 6x+15=470 | | 2x+17=9x-2 | | T^2+9t-4=-5 | | -9/10p=18/5 | | X^2+6x=x+50 | | 242=172-v | | -9/10p=33/5 | | P(x)=-40x^2+2080x-16000 | | 227=-y+115 | | 2x+7x+5=28 | | 4(x-5)=-3(x-5 | | P(x)=40x^2+2080x-16000 | | x+x-8=100 | | 3x—8=x+4 | | x+(4x-13)+(20x-65)=1512 | | 40x3-12x2-72x=0 | | 93=27^x | | 21/3x-5=15/6x+1/3 | | 12x=3.5x+34 | | 76.03=y+70.18 | | 4^x-5=27 | | 6p-2=12 | | -4(x+7)-42=8-58 |